Autoregressive Moving Average Investopedia


Moving Average - MA BREAKING DOWN Moving Average - MA Als SMA-Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Ein 10-Tage-MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausgleichen. Der nächste Datenpunkt würde den frühesten Preis fallen lassen, den Preis am Tag 11 hinzufügen und den Durchschnitt nehmen, und so weiter wie unten gezeigt. Wie bereits erwähnt, verbleiben MAs die derzeitige Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA ein viel größeres Maß an Verzögerung haben als ein 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der MA zu verwenden hängt von den Handelszielen ab, wobei kürzere MAs für kurzfristige Handels - und längerfristige MAs für langfristige Investoren besser geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Handelssignale. MAs vermitteln auch eigene Handelssignale, oder wenn zwei Durchschnitte kreuzen. Eine aufsteigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend ist. Während eine abnehmende MA anzeigt, dass es sich in einem Abwärtstrend befindet. Ebenso wird die Aufwärtsbewegung mit einem bullish Crossover bestätigt. Die auftritt, wenn ein kurzfristiges MA über einen längerfristigen MA kreuzt. Abwärts-Impuls wird mit einem bärigen Crossover bestätigt, der auftritt, wenn ein kurzfristiger MA unter einen längerfristigen MA übergeht. Autoregressive Integrated Moving Average - ARIMA DEFINITION von Autoregressiv Integrated Moving Average - ARIMA Ein statistisches Analyse-Modell, das Zeitreihen-Daten zur Vorhersage verwendet Zukunftstrends. Es ist eine Form der Regressionsanalyse, die künftige Bewegungen entlang der scheinbar zufälligen Wanderung von Aktien und dem Finanzmarkt vorhersagen will, indem sie die Unterschiede zwischen den Werten in der Reihe untersucht, anstatt die tatsächlichen Datenwerte zu verwenden. Lags der differenzierten Serien werden als autoregressiv bezeichnet und Verzögerungen innerhalb der prognostizierten Daten werden als gleitender Durchschnitt bezeichnet. BREAKING DOWN Autoregressive Integrated Moving Average - ARIMA Dieser Modelltyp wird im Allgemeinen als ARIMA (p, d, q) bezeichnet, wobei die Ganzzahlen sich auf den autoregressiven beziehen. Integrierte und gleitende Mittelteile des Datensatzes. ARIMA-Modellierung kann Trends berücksichtigen, Saisonalität. Zyklen, Fehler und nicht-stationäre Aspekte eines Datensatzes bei der Erstellung von Prognosen.6.2 Umzugsdurchschnitte ma 40 elecsales, order 5 41 In der zweiten Spalte dieser Tabelle wird ein gleitender Durchschnitt der Ordnung 5 angezeigt, der eine Schätzung der Trend - Zyklus. Der erste Wert in dieser Spalte ist der Durchschnitt der ersten fünf Beobachtungen (1989-1993) der zweite Wert in der 5-MA-Spalte ist der Durchschnitt der Werte 1990-1994 und so weiter. Jeder Wert in der 5-MA-Säule ist der Durchschnitt der Beobachtungen in der Fünfjahresperiode, die auf das entsprechende Jahr zentriert sind. Es gibt keine Werte für die ersten zwei Jahre oder die letzten zwei Jahre, weil wir nicht zwei Beobachtungen auf beiden Seiten haben. In der obigen Formel enthält Spalte 5-MA die Werte von Hut mit k2. Um zu sehen, wie die Trendzyklusschätzung aussieht, zeichnen wir sie mit den Originaldaten in Abbildung 6.7 zusammen. Plot 40 elecsales, main quotResidential Elektrizitätsverkäufe, ylab quotGWhquot. Xlab quotYearquot 41 Zeilen 40 ma 40 elecsales, 5 41. col quotredquot 41 Beachten Sie, wie der Trend (in Rot) glatter ist als die Originaldaten und erfasst die Hauptbewegung der Zeitreihe ohne all die kleinen Schwankungen. Die gleitende Durchschnittsmethode erlaubt keine Schätzungen von T, wobei t nahe den Enden der Reihe liegt, daher erstreckt sich die rote Linie nicht auf die Kanten des Graphen auf beiden Seiten. Später werden wir anspruchsvollere Methoden der Trendzyklusschätzung einsetzen, die Schätzungen in der Nähe der Endpunkte zulassen. Die Reihenfolge des gleitenden Durchschnitts bestimmt die Glätte der Trendzyklusschätzung. Im Allgemeinen bedeutet eine größere Ordnung eine glattere Kurve. Die folgende Grafik zeigt die Auswirkung der Änderung der Reihenfolge des gleitenden Durchschnitts für die Wohnungsdaten der Verkaufsdaten. Einfache gleitende Mittelwerte wie diese sind meist von ungerader Ordnung (zB 3, 5, 7 usw.). Das ist also symmetrisch: In einem gleitenden Durchschnitt der Ordnung m2k1 gibt es k frühere Beobachtungen, k spätere Beobachtungen und die mittlere Beobachtung Die gemittelt werden. Aber wenn m war sogar, wäre es nicht mehr symmetrisch. Verschieben von Durchschnittswerten der gleitenden Mittelwerte Es ist möglich, einen gleitenden Durchschnitt auf einen gleitenden Durchschnitt anzuwenden. Ein Grund dafür ist, einen gleichmäßigen gleitenden Durchschnitt symmetrisch zu machen. Zum Beispiel könnten wir einen gleitenden Durchschnitt von Ordnung 4 nehmen und dann einen anderen gleitenden Durchschnitt von Ordnung 2 auf die Ergebnisse anwenden. In Tabelle 6.2 wurde dies für die ersten Jahre der australischen vierteljährlichen Bierproduktionsdaten durchgeführt. Bier2 lt-fenster 40 ausbeer, start 1992 41 ma4 ltmma 40 bier2, bestell 4. centre FALSE 41 ma2x4 ltmma 40 bier2, bestell 4. zentrum TRUE 41 Die notation 2times4-MA in der letzten Spalte bedeutet ein 4-MA Gefolgt von einem 2-MA. Die Werte in der letzten Spalte werden durch einen gleitenden Durchschnitt der Ordnung 2 der Werte in der vorherigen Spalte erhalten. Zum Beispiel sind die ersten beiden Werte in der 4-MA-Säule 451,2 (443410420532) 4 und 448,8 (410420532433) 4. Der erste Wert in der Spalte 2times4-MA ist der Durchschnitt dieser beiden: 450,0 (451,2448,8) 2. Wenn ein 2-MA einem gleitenden Durchschnitt der geraden Ordnung folgt (wie z. B. 4), wird er als zentrierter gleitender Durchschnitt von Ordnung 4 bezeichnet. Dies liegt daran, dass die Ergebnisse nun symmetrisch sind. Um zu sehen, dass dies der Fall ist, können wir die 2times4-MA wie folgt schreiben: begin Hut amp frac Bigfrac (y y y y) frac (y y y y) Großer Verstärker frac y frac14y frac14y frac14y frac18y. Ende Es ist jetzt ein gewichteter Durchschnitt von Beobachtungen, aber es ist symmetrisch. Auch andere Kombinationen von gleitenden Durchschnitten sind möglich. Zum Beispiel wird oft ein 3times3-MA verwendet und besteht aus einem gleitenden Durchschnitt der Ordnung 3, gefolgt von einem anderen gleitenden Durchschnitt der Ordnung 3. Im Allgemeinen sollte eine gerade Ordnung MA von einer geraden Ordnung MA folgen, um sie symmetrisch zu machen. In ähnlicher Weise sollte eine ungerade Ordnung MA von einer ungeraden Ordnung MA folgen. Schätzung des Trendzyklus mit saisonalen Daten Die häufigste Verwendung von zentrierten gleitenden Durchschnitten ist die Schätzung des Trendzyklus aus saisonalen Daten. Betrachten Sie die 2times4-MA: Hut frac y frac14y frac14y frac14y frac18y. Bei der Anwendung auf vierteljährliche Daten wird jedes Viertel des Jahres gleichgewichtig, da die ersten und letzten Bedingungen für das gleiche Quartal in aufeinanderfolgenden Jahren gelten. Folglich wird die saisonale Variation gemittelt und die resultierenden Werte von Hut t haben wenig oder keine saisonale Variation übrig. Ein ähnlicher Effekt würde mit einem 2 x 8-MA oder einem 2 x 12-MA erhalten. Im Allgemeinen entspricht ein 2 x m-MA einem gewichteten gleitenden Durchschnitt der Ordnung m1 mit allen Beobachtungen, die das Gewicht 1m mit Ausnahme der ersten und letzten Begriffe, die Gewichte 1 (2m) nehmen, Wenn also die saisonale Periode gleich und von der Ordnung m ist, benutze ein 2 mal m-MA, um den Trendzyklus abzuschätzen. Wenn die Saisonperiode ungerade und der Ordnung m ist, verwenden Sie einen m-MA, um den Trendzyklus abzuschätzen. Insbesondere kann ein 2 x 12-MA verwendet werden, um den Trendzyklus der monatlichen Daten abzuschätzen und ein 7-MA kann verwendet werden, um den Trendzyklus der täglichen Daten abzuschätzen. Andere Entscheidungen für den Auftrag der MA werden in der Regel dazu führen, dass Trend-Zyklus-Schätzungen durch die Saisonalität in den Daten verunreinigt werden. Beispiel 6.2 Herstellung elektrischer Geräte Abbildung 6.9 zeigt eine 2-mal 12-MA, die auf den Index der elektronischen Ausrüstung angewendet wird. Beachten Sie, dass die glatte Linie keine Saisonalität zeigt, ist es fast das gleiche wie der Trendzyklus, der in Abbildung 6.2 gezeigt wird, der mit einer viel anspruchsvolleren Methode geschätzt wurde, als im Durchschnitt zu fahren. Jede andere Wahl für die Reihenfolge des gleitenden Durchschnitts (außer 24, 36, etc.) hätte zu einer glatten Linie geführt, die einige saisonale Schwankungen zeigt. Plot 40 elecequip, ylab quotNeu bestellt indexquot. Col quotgrayquot, main quotElektrische Geräteherstellung (Eurozone) 41 Zeilen 40 ma 40 elecequip, Auftrag 12 41. col quotredquot 41 Gewichtete Bewegungsdurchschnitte Kombinationen von gleitenden Durchschnitten führen zu gewichteten gleitenden Durchschnitten. Zum Beispiel entspricht der oben diskutierte 2x4-MA einem gewichteten 5-MA mit Gewichten, die durch frac, frac, frac, frac, frac gegeben sind. Im allgemeinen kann ein gewichteter m-MA als Hut t sum k aj y geschrieben werden, wobei k (m-1) 2 und die Gewichte durch a, Punkte, ak gegeben sind. Es ist wichtig, dass die Gewichte alle zu einem summieren und dass sie symmetrisch sind, so dass aj a. Die einfache m-MA ist ein Spezialfall, bei dem alle Gewichte gleich 1m sind. Ein großer Vorteil der gewichteten gleitenden Durchschnitte ist, dass sie eine glattere Schätzung des Trendzyklus ergeben. Anstelle von Beobachtungen, die die Berechnung mit vollem Gewicht betreten und verlassen, werden ihre Gewichte langsam erhöht und dann langsam verringert, was zu einer glatteren Kurve führt. Einige spezifische Sätze von Gewichten sind weit verbreitet. Einige davon sind in Tabelle 6.3 aufgeführt.

Comments

Popular posts from this blog

Forex Nfa Regulierung

Binär Optionen Handelssystem Omni11

Forex Profit 400 Wochen